

St. Gerard's Catholic Primary R.C. GRIMABY And Nursery School

St Gerard's Catholic Primary and Nursery School

Calculation Policy 2023-24

St. Gerard's Catholic Primary and Nursery School

Introduction:

This policy is written to serve the requirements of the 2014 National Curriculum. It provides guidance on the appropriate calculation methods and progression. The content is divided into the four main operations: addition, subtraction, multiplication and division. Pupils should still make connections between different mathematical strands so that they develop fluency and reasoning and problem solving skills. This Policy is supported a progression document which details the route of progression through the year groups. Children should be given the opportunity to explore the concrete, pictorial and abstract in order to broaden and add depth to their understanding.

St. Gerard's Catholic Primary and Nursery School

AIMS OF THE POLICY:

To ensure consistency and progression in our approach to calculation

To ensure that children develop an efficient, reliable, formal written method of calculation for all operations

To ensure that children can use these methods accurately with confidence and understanding

Addition:

St. Gerard's Catholic Primary and Nursery School

Written methods for addition

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of addition. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for addition which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for addition, each stage building towards a more refined method.

There are some key basic skills that children need to help with addition, which include:

- counting
- estimating
- recalling all addition pairs to 10, 20 and 100 (7 + 3 = 10, 17 + 3 = 20, 70 + 30 = 100)
- knowing number facts to 10(6+2=8)
- adding mentally a series of one-digit numbers (5 + 8 + 4)
- adding multiples of 10 (60 + 70) or of 100 (600 + 700) using the related addition fact, 6 + 7, and their knowledge of place value

• partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways (432 into 400 + 30 + 2 and also into 300 + 120 + 12)

understanding and using addition and subtraction as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Objective, Strategy & Key Vocabulary	Concrete	Pictorial	Abstract	VA
Comparing Objects, groups of objects Length, weight, mass, heavier, light- er, same, equal	People's height, distance, mass. Use of pan balances using numicon to show equivalence, < > Comparing multiple objects Use of concrete materials eg. Compare bears, jewels, cubes etc to create groups of different sizes to compare			
Using < > and = Fewer, more, less than, more than, equal to, fewer than	Use a multilink staircase in two colours		Use variation with missing boxes and missing symbols. $3 \bigcirc 4 \qquad 4 > \square$ $2 \bigcirc 2 \qquad \square < 6$	
Finding one more, finding one less		1 1 1 1 1 1 1 more more more more more more more more	One more/less sentences – example one: 1 more than 3 is 1 less than 2 is 1 more than is 1 1 less than is 1	

Objective, Strategy & Key Vocabulary	Concrete	Pictorial	Abstract	VA
Adding 1 gives 1 more	First Then Now	First Then Now	6 +1 7 	
Augmentation— increasing an amount	Use FIRST, THEN, NOW and range of practical situations for showing augmen- tation. E.g. first there were three chn on carpet then 2 more came. Now there are 5 chn on the carpet.	First Then Now	4 + 3 7 $4 + 3 = 7$	
Stories of numbers within 10	Children should work with doubled sided counters and ten frame. Start with 7 red, turn one over, tell me the 'story'? Turn one more over. What is the 'story'? Continue. Complete this for stories of all numbers up to 10.	Image: state stat	7+0=7 6+1=7 5+2=7 4+3=7 3+4=7 2+5=7 1+6=7 0+7=7	

Objective & Strategy & Key Vocabulary	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two num- bers together as a group or in a bar.	s part whole 2 barr, b f f f f f f f f f f f f f f f f f f	4 + 3 = 7 5 3 Use the part-part whole diagram as shown above to move into the abstract.
Regrouping to make 10. This is an essential skill for column addition later.	= 11 	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent & use number bonds and related subtraction facts within 20	Start with the big- ger number and use the smaller number to make 10. Use ten frame	3 + 9 = Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. 9 + 5 = 14 14 14 14 14 14 14 14	Emphasis should be on the language '1 more than 5 is equal to 6.' '2 more than 5 is 7.' '8 is 3 more than 5.'
		Craw 2 more hats Craw 2 more hats 5 + 2 =	

Adding	g I and 2		Bonds to	<mark>o 10</mark>	A	dding 10		Bridg comper	ing/ Isating		YI f	
Do	oubles		Adding	g 0	Nea	ar double	s			I		facts
+	0	I	2	3	4	5	6	7	8	9	10	
0	0 + 0	0 +	0 + 2	0 + 3	0 + 4	0 + 5	0 + 6	0 + 7	0 + 8	0 + 9	0 + 10	S
Ι	I + 0	+	I + 2	+ 3	+ 4	1 + 5	l + 6	+ 7	+ 8	I + 9	+ 10	
2	2 + 0	2 +	2 + 2	2 + 3	2 + 4	2 + 5	2 + 6	2 + 7	2 + 8	2 + 9	2 + 10	
3	3 + 0	3 +	3 + 2	3 + 3	3 + 4	3 + 5	3 + 6	3 + 7	3 + 8	3 + 9	3 + 10	
4	4 + 0	4 +	4 + 2	4 + 3	4 + 4	4 + 5	4 + 6	4 + 7	4 + 8	4 + 9	4 + 10	
5	5 + 0	5 +	5 + 2	5 + 3	5 + 4	5 + 5	5 + 6	5 + 7	5 + 8	5 + 9	5 + 10	
6	6 + 0	6 +	6 + 2	6 + 3	6 + 4	6 + 5	6 + 6	6 + 7	6 + 8	6 + 9	6 + 10	
7	7 + 0	7 +	7 + 2	7 + 3	7 + 4	7 + 5	7 + 6	7 + 7	7 + 8	7 + 9	7 + 10	
8	8 + 0	8 +	8 + 2	8 + 3	8 + 4	8 + 5	8 + 6	8 + 7	8 + 8	8 + 9	8 + 10	
9	9 + 0	9 +	9 + 2	9 + 3	9 + 4	9 + 5	9+6	9 + 7	9 + 8	9 + 9	9 + 10	
10	10 + 0	10 + 1	10 + 2	10 + 3	10 + 4	10 + 5	10+6	10 + 7	10 + 8	10 + 9	10 + 10	

Adding multiples of ten $50=30+20$
Use known number facts Part part whole Using known facts $\begin{bmatrix} 1 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
Using known facts Ted Ted Ted Sam $1 + \frac{1}{2} = \frac{1}{2}$ $1 + \frac{1}{2} = \frac{1}{2}$ Leads to 30 + 40 = 70 Leads to $300 + 400 + 700$
Children draw representations of H,T and O '3 things and 4 things is always 7 things'
Bar model $3 + 4 = 7$ $3 + 5 = 8$ $14 + 16 = 30$

Objective & Strategy	Concrete	Pictorial	Abstract	VA
& Key Vocabulary Add a two digit number and ones	17 + 5 = 22 Use ten frame to make 'magic ten Children explore the pattern. 17 + 5 = 22 27 + 5 = 32	Use part part whole and number line to model. 17 + 5 = 22 $3 2$ 20 20 $17 + 3 + 2$ 20 20	17 + 5 = 22 22 17 5 Explore related facts $17 + 5 = 22$ $17 + 5 = 22$ $22 = 17 + 5$ $5 + 17 = 22$ $22 = 5 + 17$ $22 - 17 = 5$ $17 = 22 - 5$ $22 - 5 = 17$ $5 = 22 - 17$	
Add a 2 digit num- ber and tens	25 + 10 = 35 Explore that the ones digit does not change	25 + 30 = 55 +10 +10 +10 25 35 45 55	27 + 10 = 37 27 + 20 = 47 27 + 0 = 57 0 + 30 = 67	
Add two 2-digit numbers without bridging. 'Friendly numbers'	Model using dienes , place value counters and numicon Dienes and part-part-whole model: 45 + 23 = 68 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	47 +5 0r +20 +3 +2 47 67 70 72 Use number line and bridge ten using part whole if necessary.	25 + 47 20 + 5 40 + 7 20 + 40 = 60 5 + 7 = 12 60 + 12 = 72	

Objective & Strategy & Key Vocabulary	Concrete	Pictorial	Abstract
Y4—add numbers with up to 4 digits	Children continue to use dienes or pv counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	•• ** **	2634 + 4517
	theusands humbreds to the ones 0000 00000000000000000000000000000000		7141
		7 1 5 1	1 1
	Hordseds Dors Ones Image: Construction of the second sec	Draw representations using pv grid.	Continue from previous work to carry ones, tens and hundreds. Relate to money and measures.
Y5—add numbers with more than 4 digits.	As year 4	2.37 + 81.79	22,634
Add decimals with 2 dec- imal places, including money.	+ ones tenths hundredths (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	tens onus tents hundredtes 00 000 00000 000 0 00000 00000 00 00000 00000 00 00000 00000 00 00000 00000 00 00000 00000 00 00000 000000	$ \begin{array}{r} + 15,673 \\ \underline{38,307} \\ 1 1 \\ + \underline{127.67} \\ + \underline{15,673} \\ \underline{11} \\ + \underline{127.67} \\ + \underline{166.12} \\ \underline{11} \\ 1 1 \end{array} $
Y6—add several num- bers of increasing com- plexity	Some children may need to ruse manipula- tives and/or representations for longer. See year 5		89,472 63,673
Including adding money, measure and decimals with different numbers of decimal points.			$\begin{array}{c} + \underline{3,010} \\ 1,56,161 \\ 1111 \\ 1111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 13.020 \\ 4.057 \end{array}$

Subtraction:

St. Gerard's Catholic Primary and Nursery School

Written methods for Subtraction

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of subtraction. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for subtraction which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for subtraction, each stage building towards a more refined method.

There are some key basic skills that children need to help with subtraction, which include:

- counting
- estimating
- recalling all addition pairs to 10, 20 and 100 along with their inverses (7 + 3 = 10, 10 3 = 7, 17 + 3 = 20, 20 3)
- = 17, 70 + 30 = 100, 100 30 = 70)
- knowing number facts to 10 and their inverses (6 + 2 = 8, 8 2 = 6)
- subtracting multiples of 10 (160 70) using the related subtraction fact, 16 7, and their knowledge of place value

• partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways (432 into 400 + 30 + 2 and also into 300 + 120 + 12)

• understanding and using subtraction and addition as inverse operations Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

• using inverse

- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Objective & Strategy	Concrete	Pictorial	Abstract
Subtracting a multi- ple of 10	3 32 - 10 = 22 Children use dienes, PV counters or Numicon. They remove the cor- rect number of tens	Children draw rods and cu- bes and cross off multiples of ten.	$64 - 10 = \square$ $64 - 20 = \square$ $64 - 30 = \square$ $64 - \square = 24$ $\square - 50 = 14$
Subtract a single digit from a two dig- it number No regrouping	9 29 3 6 3 26 Explore that 9 - 3 = 6 so 29 - 3 = 26 etc	$ \begin{array}{c} -3 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \end{array} $ $ \begin{array}{c} -3 \\ -3 \\ \hline -3 \\ \hline -3 \\ \hline 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ \end{array} $ $ \begin{array}{c} -3 \\ 19 - 3 = 16 \\ 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ \end{array} $	9 - 3 = 6 19 - 6 = 13 29 - 6 = 23 etc
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'.	20 - 4 = 16	20—4 = 16
Partitioning to sub- tract without re- grouping. 'Friendly numbers'	34-13 = 21 Use Dienes to show how to par- tition the number when subtracting without regrouping.	43—21 = 22 Children draw representations of Dienes and cross off.	43—21 = 22

Objective & Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	47—32 Use base 10 or Numicon to model	Calculations 545 -22 -22 -22 -22 -22 -22 -22 -2	$47 - 24 = 23$ $-\frac{40 + 7}{20 + 4}$ $-\frac{20 + 4}{20 + 3}$ Intermediate step may be needed to lead to clear subtraction under- standing. 32 -12 20
Column subtraction with regrouping	Tens Units Image: Constraint of the state	45 39 16 10 30 30 30 30 30 30 30 3	$\frac{836 - 254 * 582}{\frac{300}{50} + \frac{7}{36} + \frac{7}{6} + \frac{7}{500} + \frac{7}{20} +$

Objective & Strategy	C	oncrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtrac- tion through context of money	23	34 - 179	Children to draw pv counters and show their exchange—see Y3	2 x 5 4 - 1 5 6 2 1 1 9 2 Use the phrase 'take and make' for ex- change
Year 5- Subtract with at least 4 dig- its, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal point.	As Year 4		Children to draw pv counters and show their exchange—see Y3	$ \begin{array}{c} $
Year 6—Subtract with increasingly large and more complex numbers and decimal values.				$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $

Multiplication

St. Gerard's Catholic Primary and Nursery School

Written methods for Multiplication

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of multiplication. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for multiplication which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for multiplication, each stage building towards a more refined method.

There are some key basic skills that children need to help with multiplication, which include:

- counting
- estimating
- understanding multiplication as repeated addition
- recalling all multiplication facts to 12 × 12
- partitioning numbers into multiples of one hundred, ten and one
- working out products (70 × 5, 70 × 50, 700 × 5, 700 × 50) using the related fact 7 × 5 and their knowledge of place value
- adding two or more single-digit numbers mentally
- adding multiples of 10 (60 + 70) or of 100 (600 + 700) using the related addition fact, 6 + 7, and their knowledge of place value
- adding combinations of whole numbers
- understanding and using division and multiplication as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Objective & Strategy	Concrete	Pictorial
Double numbers to 10	Use practical activities using manipultives in- cluding cubes and Numicon to demonstrate doubling double 4 is 8 $4 \times 2 = 8$	Draw pictures and bar models to show how to double numbers Double 4 is 8 6 3 3
Counting in groups of 2	Count in 2s using real life objects and contexts.	Children make representations to show counting in multiples of 2.Count in multiples of a number aloud.
Counting in groups of 10	Use real life objects and contexts to count in groups of 10	Use and draw representations for counting in multiples of 10. Count in multiples of 10 aloud Show jumps of 10 on a number line $0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{bmatrix}$
Counting in groups of 5	Use real life objects and contexts to count in groups of 5	Use and draw representations for counting in multiples of 5. Count in 5s aloud. 0 5 10 15 20 25 30

Objective & Strategy	Concrete	Pictorial
Understand and use arrays	Use objects laid out in arrays to find the answers to 2 lots of 5, 3 lots of 2 etc.	Make and draw representations of arrays to show understanding
Equal/non equal groups	Use real life objects and contexts to examine equal and non-equal groups.	Children make/match representations of real life problems to show equal groups and find the total.

Objective & Strategy	Concrete	Pictorial	Abstract
Use repeated addi- tion for multiplica- tions	Use objects and real life contexts. $i = \frac{1}{2} + \frac{1}{2}$ There are 5 groups of 2. There are 10 socks altogether. $i = \frac{1}{3} + $	Make and draw representations to show repeated addition There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Create number sentences using repeated addition to match representations. 3 3 3 3 3 $3 3 3 3$ $3 + 3 + 3 + 3 = 12$
Relate repeated ad-	There are 9 altogether. Write multiplication sentences to	Children make and draw representa-	Write multiplication sentences to
dition to multiplica- tion using the x sign.	match repeated addition.	tions and record both an addition sen- tence and a multiplication sentence. 1+1+1+1+1+1=6 $6 \times 1+6$	match repeated addition, without the support of representations. 2 + 2 + 2 + 2 + 2 = 10 $5 \times 2 = 10$

Objective & Strategy	Concrete	Pictorial	Abstract V9
Objective & Strategy Multiplication is commutative	Concrete Create arrays using counters and cubes and Numicon. Image: Concrete state of the state of th	Pictorial Use representations of arrays to show different calculations and explore commutativity. Use representations of arrays to show different calculations and explore commutativity. Use representations of a rrays to show different calculations and explore commutativity. Use representations of a rrays to show different calculations and explore commutativity. Use representations of a rrays to show different calculations and explore commutativity. Use representations of a rrays to show different calculations and explore commutativity. Use representations and explore commutativity. Use representations of a rrays to show different calculations and explore commutativity. Use representations of a rrays to show different calculations and explore commutativity. Use representations of a rrays to show different calculations and explore commutativity. Use representations of a rrays to show different calculations and explore commutativity. Use representations of a rrays to show different calculations and explore commutativity. Use representations of a rray to show different calculations and explore commutativity. Use representations of a ray to show different calculation of a ray to show different calcu	Abstract $12 = 3 \times 4$ $12 = 4 \times 3$ Use an array to write multiplication sentences and reinforce repeated addition. 000000 5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 $5 \times 3 = 15$ $3 \times 5 = 15$ $3 \times 5 = 15$

Objective & Strategy	Concrete	Pictorial	Abstract	Y 3
Understand the 3 times table	Count in three using objects and representa- tions of multiples of 3.		There are 12 wheels. 4 × 3 = 12 3 × 4 = 12	
Understand the 6 times table	We can double our 3 times table to find our 6 times table.	3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6	12 x 3 = 36 6 x 6 = 36	
Understand the 9 times table	Count in nines using objects and representa- tions of multiples of 9. Make links 9 being three groups of three.		There are 36 apples. 4 × 9 = 36 9 × 4 = 36	CATO

Divis	ibility rules in 'families' – 2_4 and 8	Y 3
2	A number is divisible by 2 if the ones digit is even.	
4	If halving a number gives an even value, then the number is divisible by 4. <i>and</i> For numbers with more than two digits: if the final two digits are divisible by 4 then the number is divisible by 4.	
8	If halving a number twice gives an even value, the number is divisible by 8.	ON
8	the number is divisible by 8.	,

Objective & Strategy	Concrete	Pictorial	Abstract V3
Multiplying 2-digit by 1 digit using par- titioning (distributive law)	Show the links with arrays to illustrate the PV partitioning Image: Constraint of the provide of the pr	Children can represent their work with place value counters in a way that they un- derstand. They can draw the counters using colours to show different amounts or just use the cir- cles in the different columns to show their thinking as shown below. $\underbrace{7443774}_{300}40000}_{0000}$	4 x 10 = 40 4 x 3 = 12 40 + 12 = 52
2 digit x 1 digit using PV counters (no regrouping)	23 x 3 tens ones 1010 1110 1010 1100 <td>Children practice, drawing their representations. 23×3 T + 0 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0 0 0 000 0 0 0 000 0 0 0 0 000 0 0 0 0 000 0 0 0 0 0 000 0 0 0 0 0 0 000 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 000</td> <td>23 <u>x 3</u> 69</td>	Children practice, drawing their representations. 23×3 T + 0 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0 0 0 000 0 0 0 000 0 0 0 0 000 0 0 0 0 000 0 0 0 0 0 000 0 0 0 0 0 0 000 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 000	23 <u>x 3</u> 69

Objective & Strategy		Concret	e		Pictorial		Ak	ostract
Multiply 3 digit numbers by 1 digit. (no ex- change)	Use place val finding group ing by 3 so w 123 x3 = 369 bundreds 00 00 300	ue counters to os of a number. e need 3 rows	show how we are We are multiply- (1)(1)(1) (1)(1)(1) (1)(1)(1) (1)(1)(1) + 9	Children can re value counters or Dienes.	present their work wit by drawing place valu	th place e counters	231 x 3 693	3 x 1 <i>ones</i> is three ones 3 x 3 <i>tens</i> is nine tens 3 x 2 <i>hundreds</i> is six hundreds
Multiply 3 digit	Add up each o 224 x 3	column, startin	g with the ones.	261 x 2				4 times 1 <i>ones is</i> 4 ones
numbers by 1 digit. (with ex- change)	hundreds 0000 0000 0000 Regroup ten o	IIII IIIII IIIII IIIIIIIIIIIIIIIIIIIII	ones 1	H 00 00	T 000000 000000	0 0	241 <u>x4</u> 964	4 times 4 <i>tens is</i> 16 tens. I put 6 tens down and carry ten tens which is now a hundred. 4 times 2 <i>hundreds is</i> 8 hundreds. I add the hundred I have carried to make 9 hundreds.
	bundreds (COCO) (COCO) (COCO) (COCO)		ODES 1 1 1 1 1 Me car tals 20 cars to solve once for 1 1 1 1	H 00 00	T 000000 000000	000		
	600 +	70 + +672	2	500 +	20 + +522	2		

Y4

Objective & Strategy	Concrete	Pictorial	Abstract	Y5
Multiply 3 and 4 digits x 1 digit.	Children may continue to be supported by place value counters at the stage of multipli- cation. This initially done where there is no regrouping. 3024 x 3 <u>bouseds</u> <u>bundreds</u> <u>bun</u> <u>orres</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>00000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>00000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>0000</u> <u>00000</u> <u>00000</u> <u>00000</u> <u>00000000</u>	Children may continue to draw their under- standing using place value grids.	3024 <u>x 3</u> 9072	
Multiply up to 4 digits by 2 digits	Manipulatives may still be used with the cor- responding long multiplication modelled alongside. Begi with teen number x teen number.	10 8 10 100 80 3 30 24	1 8 18 x 3 on the first row x 1 3 5 4 (8 x 3 = 24, carrying the 2 for 20, then 1 x 3) 1 8 0 2 3 4 18 x 10 on the 2nd row. Show multiplying by 10 by putting zero in units first	TPLICA
	Progress to any 2 –4 digit number x 2 digit.		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FION X

Objective &	Concrete	Pictorial	Abstract	
Strategy				Υĥ
Multiply decimals up			2.38	IV
to2 decimal places by a single digit			x 3	
			7 1 4	
			1 2	
			First we lay out the calculation	
			Next, we write the decimal point in the answer (product).	
			Finally, we carry out the multiplication.	
			3 x 8 hundredths is 24 hundredths	
			3 x 3 tenths is 9 tenths, add 2 tenths we carried is 11 tenths	U
			3 x 3 <i>ones</i> is 6 <i>ones</i> , add 1 <i>one</i> we carried is 7 <i>ones</i>	
Multiply up to 4 digit				
numbers by 2 digits.			*	
			3 1 2	
			× <u>28</u>	
			2 4 9 6	
			6 2 4 0	
			8 7 3 6	
			1	

Division

St. Gerard's Catholic Primary and Nursery School

Written methods for Division

It is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of division. The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and with confidence. Children are taught and acquire secure mental methods of calculation and one written method of calculation for division which they know they can rely on when mental methods are not appropriate. This policy shows the possible stages of each written method for division, each stage building towards a more refined method.

There are some key basic skills that children need to help with subtraction, which include:

- counting
- estimating
- understanding division as repeated subtraction
- partitioning two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways (432 into 400 + 30 + 2 and also into 300 + 120 + 12)
- \bullet recalling multiplication and division facts to 12×12
- recognising multiples of one-digit numbers and dividing multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value
- knowing how to find a remainder working mentally, for example, find the remainder when 48 is divided by 5
- understanding and using division and multiplication as inverse operations

Using and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it is important that their skills are broadened through their use and application in a range of contexts, these include:

- using inverse
- missing box questions
- using units of measure including money and time
- word problems
- open ended investigations

Objective & Strategy	Concrete	Pictorial	Abstract	Y2
Strategy Understanding the Inverse		$ \begin{array}{c} 8\\ 4\\ 2\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$3 \times 4 = 12$ $12 \div 4 = 3$ $4 \times 3 = 12$ $12 \div 3 = 4$ $2 \times 4 = 8$ $8 \div 2 = 4$ $8 \div 4 = 2$ $8 = 2 \times 4$ $8 = 4 \times 2$ $2 = 8 \div 4 = 8 \div 2$	
		÷ =	Show all 8 related fact family sentences.	

Objective & Strategy	Concrete	Pictorial	Abstract	Y3
Division with remainders. (partitive)	I divide 14 cakes between 3 plates. How are the cakes shared?	Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r. $14 \div 3 = 4 r 2$ $4 r 2$	
Division with re- mainders. (quotitive)	13 eggs are put into boxes. Each box holds 3 eggs. How are the eggs boxed?	Children may draw representations to show their under- standing. Use bar models to show division with remainders. 13 3 3 3 3 1	13 ÷ 3 = 4 r 1	

Divis	sibility rules in 'families' – 3, 6 and 9
3	For a number to be divisible by 3, the sum of the digits of the number must be divisible
	by 3.
6	For a number to be divisible by 6, the number must be divisible by <i>both</i> 2 <i>and</i> 3.
9	For a number to be divisible by 9, the sum of the digits of the number must be divisible by 9.

Divis	Divisibility rules in 'families' – 5 and 10				
5	A number is divisible by 5 if the ones digit is				
40					
10	A number is divisible by 10 if the ones digit				
	is 0.				

Objective & Strategy	Concrete	Pictorial							Abstract	Y4
Interpreting divi- sion with remainders.	Bracelets are made using 4 beads. There are 23 beads. How many bracelets can be made? How many beads left over?	Bar model representations may be used.						_	23 ÷ 4 = 5 r 3	
		23								
		4	4	4	4	4		3		
Interpreting divi- sion with	4 scouts can fit in each tent. How many tents needed for 30 scouts?								30 ÷ 4 = 7 r 2	
remainders.		4	4 4	3	0 4	4	4	2	8 tents are needed. Discuss with pupils the need to round up in this context.	

There is 1 group of 3 tens. There is a ten left over. We exchange this for 10 ones. 12 ones

8

There are 8 groups of 4 ones.

There is 1 group of 4 hundreds. There are no groups of 4 tens and three tens left over.

3

divided by 3 is 4

432÷4

Abstract

124

37¹2

3

4 5[°]27

Divisibility rules in numerical order					
2	A number is divisible by 2 if the ones digit is even.				
3	For a number to be divisible by 3, the sum of the				
	digits of the number must be divisible by 3.				
4	If halving a number gives an even value, then the				
	number is divisible by 4.				
	and				
	For numbers with more than two digits: if the final				
	two digits are divisible by 4 then the number is				
	divisible by 4.				
5	A number is divisible by 5 if the ones digit is				
	5 or 0.				
6	For a number to be divisible by 6, the number must				
	be divisible by both 2 and 3.				
8	If halving a number twice gives an even value, the				
	number is divisible by 8.				
9	For a number to be divisible by 9, the sum of the				
	digits of the number must be divisible by 9.				
10	A number is divisible by 10 if the ones digit is 0.				

